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I. Overview 
 
This is the final report on the Information Survivability project at the MIT Artificial 
Intelligence Laboratory.  The work was conducted in the period January 1,1998 through 
December 31, 1999.  The project aimed to exploit representations and techniques used in 
AI research and development to support the construction of Survivable Information 
Services.   
 
The central premise of this work is that a significant shift of focus and approach is 
necessary in order to deal with the emerging threat of information attacks on the critical 
infrastructures of our society.  A range of studies, for example those conducted by the 
RAND Corporation and by a DARPA ISAT project, raised the concern that a concerted 
information attack by a skillful and motivated opponent could lead to catastrophic 
consequences.  In particular, it was observed that the increasingly reliance by the 
Department of Defense on advanced information technologies made it particularly 
vulnerable to such attacks.  Information attacks have few physical warning signs, are 
often extremely difficult to detect, are difficult to distinguish from normal malfunctions, 
and are capable of interfering with or totally disabling complex military operations.  
Finally, it was observed that traditional security techniques only address part of the 
problem; they attempt to prevent attacks, but they offer little once an attack has been 
successfully launched. 
 
The approach adopted by the MIT research team was to assume that attacks could be 
successfully launched.  The evidence for this seemed overwhelming: Red teams have 
been able to penetrate virtually all systems tested in relatively short order.  Secondly, 
traditional security techniques are aimed at keeping out attackers, but tend to ignore the 
possibility of a compromised insider.  Thus, instead of trying to build impenetrable and 
secure systems, the research group adopted the approach of detecting attacks and 
attempting to reconfigure the information systems involved to insure the survivability and 
sustainability of the critical services being provided. 
 
The following imaginary scenario illustrates the types of subtle attacks that are believed 
to be realistic.  The scenario illustrates the ability of an attack to interfere with military 
operations; it also illustrates the “stealthy” nature of such attacks.  Unlike physical 
attacks, information attacks have no major associated event involving the physical 
presence of the attacker.  In fact, it is often difficult to ascertain whether an attack has 
actually transpired.  Finally, even if it is clear that an attack has happened it is still often 
impossible to infer the intentions of the attackers. 
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II. A Scenario 
 
It was late Sunday evening, July 16, 2006 when the first alarm indicators began to appear 
at the headquarters of the US 101st Fighter Wing at their base in Saudi Arabia.  The flight 
planning system was going through its usual paces, planning the next set of routine 
missions over Iraq's no-fly zone, when the diagnostic system reported that the planning 
was taking too long. 
 
Diagnostic software went into action to determine the source of the problem and what to 
do about it.  Working from its description of the overall structure and behavior of the 
system (an electronic version of the system block diagram and other documentation), the 
diagnostic software determined that mission planning required information from ground-
based intelligence supplied by CIA, aerial photo reconnaissance from NRO, mission 
focus information from the Joint Chiefs, and aircraft readiness information from the 
logistics systems.  Monitoring and measurements indicated that all but the last of these 
seemed to be performing up to specs; only the logistics information was slow in coming. 
 
The diagnostic software then ``dug down'' into the documentation for the logistics 
system, determined that it was in turn composed of 3 systems handling information about 
individual aircraft status, supplies availability, and pilot availability.  Of these three the 
last appeared to be growing increasingly slow in its response time. 
 
Another reference to the system documentation indicated that the pilot availability system 
was in fact a distributed application currently running at three sites in Europe.  At this 
point the system began further probes, this time directed at those particular physical 
installations, which indicated that one of the three sites providing the pilot availability 
function was currently the target of a storm of network requests, clearly intended to 
produce a denial of service as the machine attempted to keep up with the requests.  The 
diagnostic system sent off email warnings to the appropriate people and programs at both 
the site in Europe and at the DoD's NIH (Network Institute of Health), warning about the 
attack. 
 
Selecting an appropriate subset of DoD systems, it then sent out a broadcast message 
announcing the need for a system to provide part of the pilot availability service.  Within 
a few seconds it had received several bids to take on the task from among those systems, 
with each bid indicating what resources the responding machine could apply to the task, 
likely response times, etc.  Choosing the best of these, it informed the other two sites in 
Europe that part of the pilot availability task was being taken over by a new location, and 
noted that soon thereafter the speed of the no-fly zone mission planning was back up to 
normal.  
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III. Implications of the Scenario: Approaches to Intrusion 
Detection 
 
The scenario illustrates the several key problems that must be addressed.  What are 
observable are symptoms, behaviors of the computation other than those intended.  What 
one wants to know, on the other hand, is what’s wrong?  Has there been an attack? If so, 
what kind of attack? What resources has it affected?  How has it affected those 
resources?  Can those resources be trusted for future computations? If not, how should 
the computations be carried out? 
 
Several approaches to intrusion detection have already been developed.  They all make 
different tradeoffs between the dual problems of false-positives and false-negatives.  We 
will first describe the causes of these problems, outline the structure of the space of 
intrusion detection systems and then explain where our approach fits into this space and 
how it represents a fundamentally new approach that is not as prone to these problems. 
 
The earliest intrusion detection systems were built around a library of known attacks. 
These systems attempt to match the current data to this library.  When an attack is 
recognized, these techniques are quite informative; they know exactly what type of attack 
has been launched and can therefore predict with some certainty what resources might 
have been compromised as a result.  False negatives arise when the system is knowledge-
poor, in particular when its library of known attacks does not include the actual attack.   
In effect, this class of systems is the class of Expert systems for intrusion detection; it is 
subject to the classic brittleness of expert systems, when the problem falls off the 
“knowledge cliff” the system fails with a false negative. 
 
In an attempt to counteract these shortcomings, a different type of system was developed.  
Instead of recognizing specific attacks, these systems rather built a statistical profile of 
normal user behavior and then looked for behavior that did not match this profile.  Since 
there is no reliance on a catalog of attacks, there is no problem with the incompleteness 
of the library.  However, there are dual problems.  First of all, when such a system does 
detect a deviation from the statistical profile it is usually quite uninformative about what 
is wrong; at best, it can say that the user (or process) is behaving outside its normal range.   
It is unclear what kind of attack this might indicate or whether it indicates an attack at all.  
In fact, such systems in practice have exhibited a very high false positive rate, identifying 
benign user behavior as an attack because it somehow false outside the range of normal.  
Thus, this class of system is that class of anomaly detectors, sharing the usual problems 
of anomaly detector systems: false positives and a failure to provide precise 
characterizations of the problem. 
 
The third class of systems attempts to avoid the problems of the above methods using 
machine learning.  These systems are trained against a corpus of labeled data including 
attacks and normal behavior.  The machine learning algorithms attempt to generalize the 
attack data producing a recognizer capable of identifying all the attacks in the training set 
as well as others not present in the data.  However, these systems are still limited by the 
data: attacks dissimilar to the training data are not recognized and normal behavior 
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dissimilar to the benign behaviors in the training set may be labeled as attacks by some of 
the algorithms.  In practice, the machine learning intrusion detectors represent a 
compromise between the first two categories; they produce fewer false negatives than the 
expert system intrusion detectors (although their scope is dependent on the training data 
and they do still have a knowledge cliff) and they produce fewer false positives than the 
anomaly detectors since they will only alarm when the data resembles training data that 
has been labeled as an attack. 
 
There is a simple 2 by 2 matrix that helps to understand the sources of the strengths and 
weaknesses of these approaches.  On one dimension we divide systems based on whether 
they are driven by statistical profiles or models of structure and function.  On the other 
dimension we divide systems by whether they attempt to directly recognize bad behavior 
or instead attempt to notice deviations from expected or normal behavior.  Anomaly 
detectors are driven by statistical profiles and notice deviations from normal. In the 
diagonally opposite quadrant are the expert systems, driven by models and direct 
recognition of malign behavior.  It is therefore not surprising that these two classes of 
systems have directly complementary problems: One suffers from false positives because 
its statistical profile is under informed about normal behavior and it is driven by detecting 
deviations; the other suffers from false negatives because its catalog of attack models is 
under informed about the breadth of attacks and it is driven by matching the data to an 
existing model.  Machine learning systems represent a compromise; they occupy a 
common row or column with each of the other categories.   
 

 
Figure 1: The space of intrusion detection systems 

 
Our work occupies the fourth quadrant.  It is driven by a model of the system’s intended 
behavior; it works by recognizing deviations from this model.  Such an approach is not 
subject to false negatives, because any deviation from the expected behavior will be 
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noticed as abnormal.  It is informative, characterizing precisely how the behavior deviates 
from the normal.  As we will show later, one can make strong statistical inferences about 
the nature of the attacks that might have caused the misbehavior.  The approach is also 
not prone to false positives since the behavior model precisely characterizes correct or 
intended behavior.  Thus, we believe that this model-based diagnosis approach represents 
both a fundamentally new approach as well as one that make complementary and better 
tradeoffs. 
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IV.  Scope of the work 
 
The work originally proposed to DARPA involved a thorough investigation into the 
above set of questions.  The approach represented a significant change of focus: rather 
than attempting to prevent attacks by constructing provably secure systems, the proposed 
research instead shifted to the question of responding to and surviving attacks.  This leads 
to several new questions as the core of the research: 
 

• How do we describe attacks?  What framework and vocabulary enable one to deal 
with the huge variety of exploits that are already know about and more 
importantly how does one deal with the seemingly ever increasing body of new 
exploits that hackers employ? 

 
• What techniques can be employed to detect attacks?  Hackers routinely develop 

new techniques for attacking systems and every new release of a complex 
software system seems to create new opportunities for information attacks.   For 
every key exploit, there are a large number of variations.  Thus merely cataloging 
attack seems to be a hopeless pursuit.  What other approaches are possible?  What 
kinds of reasoning or pattern matching techniques might be appropriate? 

 
• What should a system do once an attack is noticed?  Not all attacks have the same 

consequences and not all attacks affect all machines in the same way.  How can a 
computation reconfigure itself to capitalize on the existence of resources that are 
uncompromised or at least are less compromised than others? 

 
The proposed work involved several tasks each aimed at providing technology relevant to 
different parts of the problem outlined above.  The proposed statement of work was for 
three years.  However, DARPA elected to fund a subset of the proposed tasks over a 
shorter period of time.  In particular, the funded project involved the following three tasks 
 
A. Task 1: Developing an ontology of information attacks 
We will begin our work by reviewing the years of experience that have been had with 
attacks on computer networks, with an eye to organizing it to provide a sense of the range 
of phenomena that will need to be considered.  One recent source of identifies three very 
general kinds of attacks: intrusions, denial of service, and information theft.  Beneath this 
there is considerably more detail, including viruses, Trojan horses, spoofing of various 
sorts, etc.  The product of the work will be a draft ontology that will be updated 
continuously as the work progresses; success will be measured by its ability to provide a 
foundation in designing a behavior description language for the model-based reasoner. 
 
B. Task 2: Build representations of structure and behavior 
We will build representations of structure and behavior capable of describing large scale 
distributed information systems.  The structure representation will need to describe both 
the logical /functional and physical structure of the systems.  The logical/functional 
structure indicates the decomposition of the system by capability, for example a logistics 
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system might be decomposed into three sub-systems dealing with aircraft status, supplies 
and pilot availability respectively.  The physical structure of the systems indicates where 
each of these components actually resides, for instance the supplies a system was a 
distributed system running on three specific hosts.  Both of these descriptions are 
necessary for the task, the functional decomposition allows us to focus diagnostic 
attention on appropriate sub-components; the physical decomposition is important 
because physical adjacency of malfunctioning components can be a clue as to the nature 
of the fault.   
 
We will also construct a representation for behavior capable of describing what the 
system does at each level of physical and functional decomposition.  This provides the 
foundation for prediction of expected behavior, one core of model-based reasoning.   
 
These representations will be constructed on the base of technology provided by our 
previous work in creating representations and languages for the model-based reasoning 
task.   
 
C. Task 3: Develop a model based reasoning engine 
We will start from existing technology to create a model-based reasoning engine capable 
of working from the structure and behavior descriptions noted above, predicting expected 
behavior, comparing it against observations, and using any discrepancies between these 
two to drive and focus the diagnostic process.  While a variety of such engines have been 
created, there are a number of important differences presented by this task.  Chief among 
them is the notably more difficult task of determining when a discrepancy has occurred.  
In the world of digital circuits, where most of this work was done, a discrepancy is any 
difference at all between predictions and observations.  Clearly this will be inadequate in 
this domain where we require a far more sophisticated notion of what differences are 
significant enough to be worth investigating.   
 
These three tasks focused the effort on the diagnostic task alone, leaving questions of 
reconfiguration and resource allocation to future work.  During the course of the effort, 
however, we did engage in some activities related to these later questions at DARPA’s 
request.  These involved talks given by Dr. Howard Shrobe, Principal Investigator of the 
project, at a variety of venues including both DARPA meetings other public forums. 
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V. Summary of Research Results 
 
The key results of the research project can be summarized as follows: 
 
Ontology: It is necessary to describe attacks at multiple levels.  At the highest level we 
describe the useful computational properties that an information system provides to its 
clients (e.g. data integrity).   At the next tier, we describe the computational resources in 
the domain and their forms of compromise (e.g. the schedule has been compromised to 
starve out a particular user).  At the lowest tier, we describe the vulnerabilities of the 
computational resources (e.g. susceptibility to buffer overflows) and the set of actions 
that can exploit the vulnerability.  Thus an attack is described as an action that exploits 
vulnerability in order to compromise a resource and thereby adversely affect a useful 
property that the system delivers to its users.       
 
Descriptions of structure and functions:  Computer systems need to be described at 
multiple levels in order to reason about the possibility of attacks.  At the highest level we 
decompose a computation into components, connected by data flow and control flow.  
Each component is described by pre- and post-conditions.  The descriptions combine 
many different aspects of the computation including both functional properties (what is 
the system supposed to do) and Quality of Service properties (how fast should it do it, 
with what throughput and latency, etc.)  Components of the computation are recursively 
decomposed to a convenient depth of description.  Secondly, the components of the 
computation should be described in terms of multiple modes of behavior including the 
expected behavior (the normal mode), known failure modes and a final mode 
representing any other behaviors not enumerated in the first two categories.  Third, the 
information system should be described in terms of the resources (computers, networks, 
etc.) used to effect the computation.  Each resource similarly has multiple modes of 
behavior.  The behavioral modes of the computational elements are then linked to those 
of the resources employed. 
 
 
Reasoning Techniques: There are several techniques for detecting intrusions and 
attacks.  Several of these were developed prior to this project.  However, none of these 
approaches were found to be satisfactory, either because they lack precision or 
robustness.  We discuss this in detail later.  The answer developed in this project was to 
focus on the expected (correct) behavior of the system and to notice deviations from this 
expected behavior.  Any such discrepancy is symptomatic of a compromise due to a 
successful attack.  This approach is preferred because it both provides precise 
descriptions of the causes of the observed symptom and because it does not rely on 
pattern matching against a library of known attacks.   
 
Reasoning about attacks should be done using a hybrid of Bayesian and model-based 
diagnosis techniques.  The model-based techniques conduct symbolic deductive 
reasoning linking the observed symptoms to possible compromised states of the 
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computational resources while the Bayesian techniques associate a degree of certainty 
with each compromised state that is consistent with the observed symptoms.   
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VI. Detailed Description of Results1 
 
Our premise is that to protect critical computational infrastructures we need to restructure 
these software systems as Adaptive Survivable Systems. In particular, we believe that a 
software system must be capable of detecting its own malfunction and it must be capable 
of repairing itself.  But this means that it must first be able to diagnose the form of the 
failure; in particular, it must both localize and characterize the breakdown.  Our work is 
set in a difficult context, one in which it is assumed that there is a concerted and 
coordinated attack by a determined adversary.  This context places an extra burden on the 
diagnostic component of the system. It is no longer adequate merely to determine that a 
computation has failed to achieve its goal, in addition we wish to determine whether that 
failure is indicative of a compromise to the underlying infrastructure and whether that 
compromise is likely to lead to failures of other computations at other times.  This 
research project focuses on the diagnostic component of self adaptivity. 
 
A.  Contributions of this Work 
 
We build on previous work in Model-Based diagnosis [1, 3,4,5]. However, the context of 
our research is significantly different from that of the prior research, leading us to 
confront several important issues that have not previously been addressed.  In particular, 
we present several new advances in representation and reasoning techniques for model-
based diagnosis:   
 
• We develop representation and reasoning techniques for describing and reasoning about 

the behaviors and failures of software systems.    
 
• We develop a new mixed symbolic and Bayesian reasoning technique for model-based 

diagnosis.  The statistical component of the technique utilizes Bayesian networks to 
calculate accurate posterior probabilities.    

 
• We develop a new heuristic method for finding the most likely diagnosis that utilizes 

the statistical inferences of the Bayesian network to guide the search.  
 
• We develop techniques for reasoning about common-mode failures. A common-mode 

failure occurs when the probabilities of the failure modes of two or more components 
are not independent.  This issue has not been previously addressed in the literature on 
model-based diagnosis.    

 
• We develop techniques for reasoning about intermittent failures.  
 
These are crucial issues when failure is caused by a concerted attack by a malicious 
opponent.  There are many modes of attack but the most pernicious attackers seek to 

                                                 
1 This section is adapted from a papers published in DISCEX and submitted the AAAI 
National Conference on Artificial Intelligence.  It presents the details and results of the 
research conducted in the project. 
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avoid detection; therefore they attempt to scaffold the attack slowly, at a nearly 
undetectable rate.  These scaffolding actions will appear as faults (i.e. they will cause the 
system to behave outside its normal range), but skillful attackers will space them out, 
making them appear to be highly intermittent.  Attackers aim at high leverage points of 
the infrastructure, such as operating systems or middle-ware.  This leads to common-
mode faults; because once the operating system has been compromised all application 
components can be caused to fail at once.  The report first reviews the current state of the 
art in model-based diagnosis; this work has mainly been concerned with breakdowns 
caused by deterioration of hardware components.  In particular, we adopt the framework 
in [4] where each component has models for each of several behavioral modes and each 
model is given a probability.  Next we turn the question of how to apply these techniques 
to the diagnosis of complex software systems.  Then we extend our modeling framework 
to account for the fact that software systems are built in layers of infrastructure, with 
compromises to one layer affecting all higher levels.  We present mixed symbolic and 
statistical diagnostic algorithms for assessing the posterior probabilities of the various 
behavior modes of each component in the model.  As a by-product we develop a heuristic 
for finding the most likely diagnosis.  We present an implementation and show an 
example of the reasoning process.  Finally, we discuss the demands placed on the 
diagnostic component by our goal of self-adaptivity and conclude with suggestions for 
future research.   
 
B. Related Research   
 
Model-Based Diagnosis is a symptom directed technique; it is driven by the detection of 
discrepancies between the observations of actual behavior and the predictions of a model 
of the system.  Almost all of the reported work in the area [1,2,3,4,5] has been concerned 
with the diagnosis of physical systems subject to routine breakdown.  Model-based 
diagnostic systems use simulation models that compute expected outputs given known 
inputs; they utilize dependency directed techniques to link each intermediate and final 
value to the selected behavioral model of any component of the system which was 
involved in producing that value.  The completeness of the diagnostic process is 
dependent on having bi-directional simulation models for each component of the system. 
Such models produce both a set of assertions recording what values are expected where 
and a dependency network linking these assertions to one another and to assertions 
stating which components must be in a particular behavioral mode for those values to 
appear.  Our work builds on the framework in Sherlock [4] In that work the description of 
a component includes multiple simulation models, one for each behavioral mode of the 
component.  One distinguished mode is the normal mode, but behavioral models for 
known failure modes may also be provided.  It is also typical to include a null model to 
account for unknown modes of behavior.  Finally, each of the behavioral modes of a 
component is assigned an a priori probability.  Sherlock uses these to guide a best first 
search for a set of behavioral modes, one for each component, such that the models for 
those modes predict the observed behavior.  This is the most likely diagnosis.  Sherlock 
assumed that accurate probabilistic reasoning would be intractable and so approximate 
techniques were developed.  At the time of this work, efficient techniques for Bayesian 
networks were not yet available.   
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Because our focus is on detecting the intentional compromise of software components we 
are forced to face a number of new issues.  These include:  
 
• How to model software components in the spirit of model-based diagnosis.  
 
• How to deal with the fact that a compromise to the computational infrastructure (e.g. 

the operating system) can manifest itself in the malfunction of many application 
components.   

 
• How to deal with the fact that malfunctions may be intermittent.   
 
• How to reason about the system so as to extract as much information about possible 

compromises as we can.  In particular, we deal with how to use both symbolic and 
Bayesian techniques.   

 
C. Modeling Software Computations  
 
Model-Based Diagnosis requires completely invertible models of the components in 
order to guarantee completeness of its analysis.  But the components of a complex 
software system rarely have input-output relationships that are invertible.  We therefore 
look for additional properties that lead to more complete coverage.  In particular, we 
concentrate here on descriptions of computational delay (or other Quality Of Service 
metrics).   

 
Figure 2: Reasoning About Delay 



 

 

 

13

In our current implementation we use an interval of expected delay times (i.e. the 
computation should run no slower than x and no faster than y) as the behavioral models.  
Figure 2 shows the application of such models in a framework similar to Sherlock.  When 
propagating in the forward direction we add the delay interval predicted by the behavioral 
model to the interval bounding the arrival time of the latest input.  In the backward 
direction, we use interval subtraction (and only update the bounds on the last input to 
arrive).  When more than one component predicts the bounds for a particular value (e.g. 
when a model for component A and a model for component C both predict bounds for the 
value labeled MID), we take the intersection of the two intervals to obtain the tightest 
bounds implied by the overall model.  A discrepancy is detected when the lower bound of 
an interval exceeds the upper bound.  As in Sherlock we provide several behavioral 
models for each component, one characterizing normal behavior, others characterizing 
known failure modes and a null model to cover all other unexpected behaviors.  Notice 
that in Figure 2, there are six potential diagnoses, only one of which involves a single 
point of failure (in component C). The others involve multiple failures with one 
component running slower than expected and other components masking the fault at Out1 
by running faster than expected.  In the third diagnosis, component A runs in ``negative 
time''!  On the surface, such a diagnosis seems physically impossible and we might 
expect the diagnostic algorithm to reject it. But, the diagnosis algorithm is guided by our 
representational choices; the reason this diagnosis involves negative time is that the fast 
behavioral model of component A predicts a delay interval from -30 to +2.  The use of a 
priori probabilities as in Sherlock, can make this diagnosis an unlikely one, but should it?   
 
Suppose that both computations A and C are running on the same computer and further 
suppose that an attacker had compromised the computer.  Under these circumstances, it's 
not impossible for component C to be delayed (because of a parasitic task inserted by the 
attacker) while component A has been accelerated, running in less than zero time because 
it has been hacked by the attacker to send out reasonable answers before it receives its 
inputs.   
 
What we are able to observe is the progress of a computation; but the computation is 
itself just an abstraction.  What an attacker can actually affect is something physical: the 
file representing the stored version of a program, the bits in main memory representing 
the running program, or other programs (such as the operating system) whose services are 
employed by the monitored application.  
 
D.  Common Mode Failures 
 
A single compromise of an operating system component, such as the scheduler, can lead 
to anomalous behavior in several application components.  This is an example of a 
common mode failure; intuitively, a common mode failure occurs when a single fault 
(e.g. an inaccurate power supply), leads to faults at several observable points in the 
systems (e.g. several transistors misbehave because their biasing power is incorrect).  
Another example comes from reliability studies of nuclear power plants where it was 
observed that the catastrophic failure of a turbine blade could sever several pipes as it 
flies off, leading to multiple cooling fluid leaks.  Formally, there is a common mode 
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failure whenever the probabilities of the failure modes of two (or more) components are 
dependent.  Previous model-based diagnostic systems have assumed probabilistic 
independence of the behavior modes of different components [4] in order to simplify the 
assessment of posterior probabilities.   
 
Dealing with common mode failures requires extensions to the modeling framework to 
make explicit the mechanisms that couple the failure probabilities of different 
components.  
 
 
 
 

 
Figure 3: Modeling Computational and Infrastructural Components 
 
  
 
 
We therefore extended our modeling framework, as shown in Figure 3, to include two 
kinds of objects: computational components (represented by a set of delay models one for 
each behavioral mode) and infrastructural components (represented by a set of modes, 
but no delay or other behavioral models).  Connecting these two kinds of models are 
conditional probability links; each such link states how likely a particular behavioral 
mode of a computational component would be if the infrastructural component that 
supports that component were in a particular one of its modes.  Each infrastructural 
component mode will usually project conditional probability links to more than one 
computational component behavioral mode, allowing us to say that normal behavior has 
some probability of being exhibited even if the infrastructural component has been 
compromised (however, for simplicity, Figure 3 shows only a one-to-one mapping).  The 
model also includes a priori probabilities for the modes of the infrastructural 
components, representing our best estimates of the degree of compromise in each such 
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piece of infrastructure.  Following a session of diagnostic reasoning, these probabilities 
may be updated to the value of the posterior probabilities.  Collectively these form a bi-
partite Bayesian network; good algorithms [6] exist to compute posterior probabilities 
given observations.   
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Figure 4: An Example of the Extended System Modeling Framework 

 
 
E. Diagnostic Reasoning 
 
Figure 4 shows an extended system model of a fictitious distributed financial system that 
we use to illustrate the reasoning process.  The system consists of five interconnected 
software modules (Web-server, Dollar-Monitor, Bond-Trader, Yen-Monitor, Currency-
Trader) utilizing four underlying computational resources (WallSt-Server, JPMorgan-
Net, BondRUs, Trader-Joe).  For each computational component we show the conditional 
probability tables that show how the behavioral modes of each computational resource 
probabilistically depend on the modes of the underlying resources (each resource has two 
modes, normal and hacked).  Note that two computations (Dollar-Monitor and Yen-
Monitor) are supported by a common resource (JPMorgan-net) and compromises to this 
underlying resource are likely to affect both computations.  The failure modes of these 
two computations are no longer independent; this is indicated by the conditional 
probabilities connecting the behavior modes of the JPMorgan-net to those of both Dollar-
Monitor and Yen-Monitor.  The specific conditional probabilities supplied describe the 
degree of coupling.  Finally we show the a priori probabilities for the modes of the 
underlying resources.   
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As in earlier techniques, diagnosis is initiated when a discrepancy is detected; in this case 
this means that the predicted production time of an output differs from those actually 
observed after an input has been presented. The goal of the diagnostic process is to infer 
as much as possible about where the computation failed (so that we may recover from the 
failure) and about what parts of the infrastructure may be compromised (so that we can 
avoid using them again until corrective action is taken).  We are therefore looking for two 
things:  the most likely explanation(s) of the observed discrepancies and updated 
probabilities for the modes of the infrastructural components.  To do this we use 
techniques similar to [4].  We eventually want to identify all conflict sets, and we also 
want to conduct a best first search to find that set of modes for the computational 
components which is the most likely explanation for the observed discrepancy.   

 
Figure 5: Adding a Conflict Node to the Bayesian Network 

 
We do these tasks by a mixture of symbolic and Bayesian techniques; symbolic model-
based reasoning is used to predict the behavior of the system, given an assumed set of 
behavioral modes.  Whenever the symbolic reasoning process discovers a conflict (an 
incompatible set of behavioral modes), it incrementally extends the Bayesian network 
with a new node corresponding to the conflict (see below).  Bayesian techniques are then 
used to solve the extended the extended network to get updated probabilities which are 
used to guide the search for the most likely diagnosis.  Our behavioral models (the delay 
models) are used to predict behavior and compare the predictions with observations.  
When a discrepancy is detected, we use dependency tracing to find the conflict set 
underlying the discrepancy (i.e. a set of behavioral modes which are inconsistent).  
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At this point a new (binary truth value) node is added to the Bayesian network 
representing the conflict as shown in Figure 5.  This node has an incoming arc from every 
node that participates in the conflict.  It has a conditional probability table corresponding 
to a pure "logical and" i.e. its true state has a probability of 1.0 if all the incoming nodes 
are in their true states and it otherwise has probability 1.0 of being in its false state.   
 
Since this node represents a logical contradiction, it is pinned in its false state.  Adding 
this node to the network imposes a logical constraint on the probabilistic Bayesian 
network; the constraint imposed is that the conflict discovered by the symbolic, model-
based behavioral simulation is impossible.   
 
Once the "conflict" node is added to the Bayesian network and the network is solved, we 
obtain updated probabilities for each behavioral mode of each component. We can, 
therefore, examine the behavioral modes in the current conflict and pick that component 
whose current behavioral mode is least likely.  We discard this mode, and pick the most 
likely alternative; we continue this process of detecting conflicts, discarding the least 
likely model in the conflict and picking its most likely alternative until a consistent set is 
found. This process is a very good heuristic for finding the most likely diagnosis (but it is 
just a heuristic).   
 
Once the most likely diagnosis is found, we (optionally) continue to explore other 
combinations of behavioral modes, until possible minimal conflicts are discovered.  Each 
of these conflicts extends the Bayesian network as before, but since we are (at this point) 
conducting an exhaustive search, we don't bother to solve the partially extended Bayesian 
network until we complete the enumeration.   
 
At this point, we have found all the minimal conflicts and added conflict nodes to the 
Bayesian network for each.  We therefore also know all the possible diagnoses since 
these are sets of behavioral modes (one for each component) that are not supersets of any 
conflict set.  For each of these we create a node in the Bayesian network that is the 
logical-and of the nodes corresponding to the behavioral modes of the components.  This 
node represents the probability of this particular diagnosis.   
 
The Bayesian network is then solved one final time.  This gives us updated probabilities 
for all possible diagnoses, for the behavioral modes of the computational components and 
for the modes of the underlying infrastructural components.  Furthermore, these updated 
probabilities are those that are consistent with all the constraints we can obtain from the 
behavioral models.  Thus, they represent as complete an assessment as is possible of the 
state of compromise in the infrastructure.   
 
These posterior estimates can be taken as priors in further diagnostic tasks and they can 
also be used as a "trust model" informing users of the system (including self adaptive 
computations) of the trustworthiness of the various pieces of infrastructure which they 
will need to use.   
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F. Results 
 
We show in Table 1, Table 2 and Table 3 the results of an analysis of the sample system 
are shown Figure 4.  Inputs are supplied at times 10 and 15 for the two inputs of Web-
Server and the outputs of Currency-Trader and Bond-Trader are observed at times 35 and 
45 respectively2.   
 

 Hacked Hacked Normal Normal 
Resource Posterior Prior Posterior Prior 
Trader-Joe .324 .300 .676 .700 
Bonds R Us .207 .200 .793 .800 
JPMorgan-Net .450 .150 .550 .850 
WallSt-Server .267 .100 .733 .900 

Table 1: Posterior Probabilities of Resource Modes 
 
There are more than a dozen possible diagnoses. It should be noted that the most likely 
diagnosis is actually not all that likely; in addition the next several diagnoses are nearly 
equally as likely.  The most likely diagnosis is therefore not particularly informative for 
our two goals of recovering from the failure and steering away from compromised 
resources in the future.  However, the posterior probabilities of the modes of the 
infrastructure components are, in fact, useful guides for the second of these goals.  The 
posterior probabilities of the behavioral modes of the computational resources are useful 
guides for the first goal, because these probabilities aggregate the information contained 
in the individual diagnoses.  The posterior probabilities of the modes of the underlying 
resources are shown in Table 1.  The most significant change is the increase from .15 to 
.45 for the probability that the resource named JPMorgan-Net is hacked.  Also the 
probability that Wallst-server was hacked increased from .1 to .267.  In contrast, the 
probability that the other two resources are hacked doesn't change appreciably.  This 
changes the trustworthiness ordering of the resources: JPMorgan-Net is a posteriori the 
least trustworthy resource, followed by Trader-Joe, while the a priori listing ranks 
Trader-Joe followed by Bonds-R-US as the least trustworthy. This follows from the fact 
that the JPMorgan-Net resources are utilized by the computations Yen-Monitor and 
Dollar-Monitor and are causing a common-mode failure. 
 
 
 
 

                                                 
2 The implementation is in CommonLisp and uses the Joshua [7] rule-based reasoning 
system as well as the Ideal system [8] and in particular its implementation of the 
algorithm described in [6].  On a 300 MHz powerbook, the total solution time is under 1 
minute.  By far, the most expensive part of this is calculating the probabilities of the 
complete set of diagnoses.  The most likely diagnosis and all conflict sets are located in 
less than 10 seconds 
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Computation   Mode  Probability 
Web-Server  Off-Peak   .028 
 Peak 541
 Normal 432
Dollar-Monitor Slow .738
 Normal .262
Yen-Monitor Slower .516
 Slow .339 
 Normal 0.145
Bond-Trader Slow .590
 Fast 000
 Normal .410
Currency-Trader Slow .612
 Fast 065

 
 

Normal 0.323

Table 2: Posterior Probabilities of Computational Modes 
 
G. Intermittent Faults   
 
Intermittent faults are among the thorniest problems in diagnosis; to date, there has been 
little said in the literature about this issue.  In hardware systems, intermittent faults often 
occur due to an actual failure coupled with random events (e.g. a loose wire which is 
randomly shaken into a position where it causes a short).  In our context, intermittent 
faults occur because attackers are being careful about revealing their presence.    To 
detect attacks, we would like it to be the case that faulty behavior greatly increases the 
likelihood that an infrastructural component is in a faulty mode while normal behavior 
should not greatly reduce a current belief that a component is faulty. But, if over long 
periods of time, no faulty behavior were observed, we would expect the probability that 
the component is faulty to decrease substantially.   
 
Our current framework is capable of achieving exactly this behavior. Recall that the 
conditional probability links between the modes of infrastructure components and the 
modes of computational components is not necessarily one to one.  In fact, the normal 
behavioral mode of a computational resource can have conditional probability links to 
both the normal and an abnormal mode of an infrastructure component, although the 
conditional probabilities on these links may have very different magnitudes.  In fact, 
Figure 4 has just this structure: The normal mode of Yen-monitor, for example, is 
supported by both the Normal and Hacked modes of JPMorgan-Net with conditional 
probabilities of .6 and .05 respectively. 
 
In this case, if the behavioral component is likely to be in its normal mode, this will tend 
to increase the posterior probabilities of both the normal and abnormal mode of the 
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infrastructure component.  If the conditional probability linked to the abnormal mode is 
small (the typical case), then the posterior probability of the abnormal mode of the 
infrastructure component will increase only slightly, while its normal mode will increase 
more.  On the other hand, if an abnormal mode of the computational resource has 
conditional probability links only to a single abnormal mode of the infrastructure 
component (again the typical case), then any manifestly abnormal behavior will increase 
the posterior probability of the abnormal mode of the infrastructure component.  
Continued normal behavior will cause this probability to decrease slowly. 
 
 

 
Prob  

 Currency   Bond   Yen   Dollar   Web  

 ability   Trader   Trader   Monitor   Monitor   Server  
 .0898   Slow   Slow   Normal   Normal   Peak  
  .0876   Slow   Normal   Slow   Slow   Normal  
  .0855   Normal   Normal   slower   Slow   Normal  
  .0762   Slow   Normal   Really-

Slow  
 Slow   Normal  

  .0641   Slow   Slow   Slow   Slow   Normal  
  .0626   Normal   Slow   Really-

Slow  
 Slow   Normal  

  .0557   Slow   Slow   Really-
Slow  

 Slow   Normal  

  .0468   Normal   Slow   Slow   Normal   Peak  
  .0416   Slow   Slow   Slow   Normal   Peak  
  .0321   Slow   Normal   Normal   Slow   Peak  
  .0306   Normal   Slow   slower   Normal   Peak  
  .0301   Normal   Normal   Slow   Slow   Peak  
  .0276   Slow   Slow   Slower   Slow   Off-Peak  
  .0272   Slow   Slow   Slower   Normal   Peak  
  .0268   Slow   Normal   Slow   Slow   Peak  
  .0262   Normal   Normal   Slower   Slow   Peak  
  .0260   Fast   Slow   Slower   Normal   Peak  
  .0235   Slow   Slow   Normal   Slow   Peak  
  .0233   Slow   Normal   Slower   Slow   Peak  
  .0223   Fast   Normal   Slower   Slow   Peak  
  .0221   Normal   Slow   Slow   Slow   Peak  
  .0196   Slow   Slow   Slow   Slow   Peak  
  .0192   Normal   Slow   Slower   Slow   Peak  
  .0171   Slow   Slow   Slower   Slow   Peak  
  .0163   Fast   Slow   Slower   Slow   Peak  

Table 3: Posterior Probabilities of Diagnoses 
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VII. Conclusions and Future Work   
 
A. Conclusions 
 
The example above illustrates how model-based reasoning techniques can be used to 
extract information from a single run.  Our example is intentionally fanciful since we are 
at the present concentrating on the development of the representational and reasoning 
frameworks.  In future work we will explore realistic models of real systems.  The 
information extracted is probabilistic and it sheds light both on the question of where the 
computation might have failed and on what underlying resources might have been 
compromised.  It is notable that the identification of the most likely diagnosis is not 
particularly informative.  For example, in the most likely diagnosis Yen-Monitor is in its 
Normal mode.  However, the most likely behavioral mode for Yen-Monitor is its 
"Slower" mode, which occurs in many of the remaining diagnoses.   
 
The posterior probabilities of the behavioral modes aggregate the probabilities from each 
of the possible diagnoses, producing an overall assessment that is more informative than 
any individual diagnosis.  Of course, if there are few very few diagnoses, or the most 
likely diagnosis is extremely probable, then the probabilities of its behavioral modes will 
approximate the overall posterior probabilities.   
 
If the first diagnosis discovered is found to have very high probability and if time is of 
the essence, then it can be used as a surrogate for the more thorough analysis.  But, since 
the goal of the system is to recover from the failure and to steer away from future trouble, 
the production of individual diagnoses should not be the diagnostic focus.  Instead, the 
goal of the diagnostic process should be to assess the overall probabilities of the 
behavioral modes of the computational and infrastructure components.   
 
This is a different definition of the goal of diagnostic activity than has been used in 
previous research on model-based diagnosis.  We have not yet addressed the details of 
how the system should use this information in forming a recovery plan.  Nor have we yet 
addressed the question of what actions the system might take to obtain more information 
in future runs.  The Minimum Entropy approach in [3] provides a useful framework.  
However, the current context provides more degrees of freedom; in addition to making 
new observations, we can also change the assignment of resources to computational 
components in a way that will maximize the expected gain in information.  The details of 
this remain for future research. 
 
B. A broader vision of the problem 
 
We began this report with a scenario illustrating the need for a very broad attack on a 
number of problems relating to diagnosis, description, reconfiguration and resource 
management.  However, only a limited portion, dealing with diagnosis, was actually 
funded and pursued within this project.  Nevertheless, it has been impossible to pursue 
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this agenda without thinking more deeply about how the diagnostic component would 
interact with other aspects of a future system.  This section summarizes our thinking 
about these broader questions.  We begin by summarizing the weaknesses we find in 
traditional approaches to secure computing. 
 

1. The role of the trusted computing base 
 
Traditional approaches to building survivable systems assume a framework of absolute 
trust.  In this view, survivable systems require a provably impenetrable and incorruptible 
Trusted Computing Base (TCB).  Unfortunately, we don't have TCB's, and experience 
suggests that we never will. 
 
Instead, we will need to develop systems that can survive in an imperfect environment in 
which any resource may have been compromised to some extent.  We believe that such 
systems can be built by restructuring the ways in which systems organize and perform 
computations.  The central thrust of this approach is a radically different viewpoint of the 
trust relationships that a software system must bear to the computational resources it 
needs.  
 
The traditional TCB-based approach takes a binary view of trust; computational 
resources either merit trust or not, and non-trusted resources should not be used.  The 
traditional view also considers trustworthiness as a nearly static property of a resource: 
trust lost is never regained, short of major system reconstruction.  Consequently, these 
systems wire decisions about how and where to perform computations into the code, 
making these decisions difficult to understand, and preventing the system from adapting 
to a changing runtime environment.  
 
We agree with this viewpoint on the crucial role of the assessment and management of 
trust, but reject the assumptions about the binary, static nature of trust relationships as 
poor approximations to real-life computing situations.  We instead base our approach on 
a different, more realistic set of assumptions: 
 

• All computational resources must be considered suspect to some degree, but the 
degree of trust that should be accorded to a computational resource is not static, 
absolute, or known with full certainty.  In particular, the degree of trustworthiness 
may change with further compromises or efforts at amelioration, in ways that can 
only be estimated on the basis of continuing experience.  The system must thus 
continuously and actively monitor the computational environment at runtime to 
gather evidence about trustworthiness and to update its trust assessments. 

 
• Exploiting assessments of trustworthiness requires structuring computations into 

layers of abstract services, with many distinct instantiations of each service.  
These specific instantiations of a service may vary in terms of the fidelity of the 
answers that they provide, the conditions under which they are appropriate, and 
the computational resources they require.  But since the resources required by 
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each possible instantiation have varying degrees of trustworthiness, each different 
way of rendering the service also has a specific risk associated with it.  

 
• The best method for exploiting assessments of trustworthiness requires making 

explicit the information underlying decisions about how (and where) to perform a 
computation, and on formalizing this information and the method used to make 
the decision in a decision-theoretic framework.  The overall system adapts to the 
dynamism of the environment and to the changing degrees of compromise in its 
components by deciding dynamically which approach to rendering a service 
provides the best likelihood of achieving the greatest benefit for the smallest risk.  
We do not require that the system uses explicit decision-theoretic calculations of 
maximal expected utility to make runtime decisions; the system may instead use 
the decision-theoretic formalizations to decide on policies and policy changes, 
which then are used to compile new code governing the relevant behaviors.  

 
• The system must consider selected components to be fallible, even if it currently 

regards them as trustworthy, and must monitor its own and component behaviors 
to assure that the goals of computations are reached.  In the event of a breakdown, 
the system must first update its assessments of the trustworthiness of the 
computational resources employed and then select an alternative approach to 
achieving the goal. 

 

2. A New Set of Principles 
 
These assumptions the lead us to adopt the following key principles: 
 

• It is crucial to estimate to what degree and for what purposes a computer (or other 
computational resource) may be trusted, as this influences decisions about what 
tasks should be assigned to them, what contingencies should be provided for, and 
how much effort to spend watching over them. 

 
• Making this estimate depends in turn on having a model of the possible ways in 

which a computational resource may be compromised. 
 

• This in turn depends on having in place a system for long term monitoring and 
analysis of the computational infrastructure that can detect patterns of activity 
such as ``a period of attacks followed by quiescence followed by increasing 
degradation of service''. Such a system must be capable of assimilating 
information from a variety of sources including both self-checking observation 
points within the application itself and intrusion detection systems. 

 
• The application itself must be capable of self-monitoring and diagnosis and 

capable of adaptation so that it can best achieve its purposes with the available 
infrastructure.  
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• This, in turn, depends on the ability of the application, monitoring, and control 
systems to engage in rational decision-making about what resources they should 
use in order to achieve the best relation of expected benefit to risk. 

 
 
Systems that can do the above things can be resilient in the face of concerted information 
attacks.  They can carry on despite non-malicious intrusions; that is they can figure out 
when compromises that might be present within the infrastructure can't actually hurt 
them. 
 
This viewpoint can be summarized in the following simple but revolutionary claim: 
``Survivable systems make careful judgments about the trustworthiness of their 
computational environment and make rational resource allocation decisions accordingly.'' 
 
The claim is deceptively simple:  To make it real one needs to develop serious 
representations of the types of compromises, of the trustworthiness of a resource, and of 
the goals and purposes of the computational modules within an application.  One also 
needs to build monitoring, analysis and trend detection tools and adaptive computational 
architectures.  Finally, one needs to find a way to make the required rational decision 
making computationally tractable.  The claim is also revolutionary: we note that with the 
single exception of the term intrusion detection, none of the key terms in our summary 
above are ordinarily talked about in the context of information survivability.  
 

3. The Active Trust Management Architecture  
 
These considerations motivate architecture both for the overall computational 
environment (Active Trust Management) and for the application systems that run within 
it (Autonomous Adaptive Survivable Systems). The environment as a whole must 
constantly collect and analyze data from a broad variety of sources, including the 
application systems, intrusion detection systems, system logs, network traffic analyzers, 
etc.  The results of these analyses inform a ``Trust Model'', a probabilistic representation 
of the trustworthiness of each computational resource in the environment.  The 
application systems use this trust model to help decide which resources should be used to 
perform each major computational step; in particular, they try to choose that resource 
which will maximize the ratio of expected benefit to risk.  This ``rational decision 
making'' facility is provided as a standard utility within the environment.  The application 
systems also monitor the execution of their own major components, checking that 
expected post-conditions are achieved.  If these conditions fail to hold, diagnostic 
services are invoked to determine the most likely cause of the failures and thereby to 
determine the most promising way to recover.  In addition to localizing the failure, the 
diagnostic services can also infer that underlying elements of the computational 
infrastructure are likely to have been compromised and these deductions are forwarded to 
the monitoring and analysis components of the environment to help inform its 
assessments of trustworthiness.  Finally, having accumulated sufficient evidence, the 
monitoring and analysis systems may decide that it is likely that some resource has, in 
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fact, been compromised.  This will have an immediate impact if the resource is being 
used to perform a computation which would be damaged by the specific form of 
compromise; in such cases, the monitoring and analysis components transmit ``alarms'' 
into the running application, causing it to abandon its work and to immediately initiate 
recovery efforts.  Of course, a monitoring system which transmits such alarms too 
frequently is the computational equivalent of the shepherd boy who called ``wolf'' too 
often; the system again uses rational decision-making facilities to decide whether the 
circumstances warrant this choice.  
 
Thus the application system forms a tight feedback control loop whose goal is to 
guarantee the best possible progress towards providing the services the application is 
intended to provide to its users (i.e., the applications are Autonomous Adaptive 
Survivable Systems ``AASS's'').  The computational infrastructure also forms a feedback 
control loop whose goal is to maintain an accurate assessment of the trustworthiness of 
the computational resources; this assessment can then inform the application systems' 
decision making and self-monitoring which in turn helps inform the long-term 
assessments of trustworthiness (Active Trust Management ``ATM'').  

 
Figure 6: The Active Trust Management Architecture 

 
This final section will briefly discuss the major components of such an architecture. 
 

a) The Trust Model 
 
Making rational decisions about how to use resources in an environment of imperfect 
trust requires information about what resources can be trusted, and for what purposes.  It 
will be necessary to develop models of trust states that go beyond mere information about 
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whether or how a system has been subject to attack to represent whether or how different 
properties of the system have been compromised, and finally to represent whether they 
can be trusted for a particular purpose even if compromised.  It will also be necessary to 
represent the degree to which these judgments should be suspected or monitored. Trust 
assessments necessarily involve many dimensions along which a system can be trusted, 
since a system might be trusted for one operation (delivery of a message) but not for 
another (privacy of the message), and might be trusted with one type of information but 
not another (as in security classification systems). Formalizing trust-state models requires 
a language for making assertions about trust states, and reasoning about trust models 
requires effective methods for evaluating these statements.   
 
These models provide the point of intersection among all the other elements of the 
approach.  Indeed, trust plays a central role in resource allocation decisions. All decisions 
about what to do must be based on beliefs about the situation in which the action is to be 
taken.  We can think of the degree of trust one places in a system as the degree to which 
one is willing to rely on the proper functioning of the system without also dedicating 
unusual effort to preparing for the contingency of failure.  Since preparations for 
contingencies consume resources, this makes trust management a central resource 
allocation issue.  
 
The trust model is organized into three levels above that of raw behavior: 
  
The lowest level of the trust model represents the results of initial interpretations such as 
attacks and anomalous behavior.  At this level we collect, filter and organize the 
necessary information so that it can trigger trend templates and feed into Bayesian 
inference networks.  As we argued earlier, we are not primarily interested in what attacks 
or anomalous behaviors have taken place, but rather in what they imply about what 
compromises might actually be present.   
 
The middle level of the trust model deals with compromises.  The attack level only tells 
us that malicious or anomalous activity has taken place.  But what we are interested in is 
whether someone has actually succeeded in an attack and has used that to exploit or 
corrupt resources.  That such a compromise has been occurred can be inferred by 
matching the temporal patterns of activity to a trend template for a particular 
compromise.  For example, the gaining of unauthorized user level access might be 
indicated by the temporal pattern of password sweeps followed by quiescence followed 
by increasing resource consumption.  
 
The categorization of compromise states is relatively virgin territory, and one that 
requires new research.  It would be natural to begin by first of all considering the 
properties that standard security techniques protect, such as the standard concepts of 
privacy, integrity, authentication, and non-repudiation.  Within each of these dimensions, 
one can identify a variety of finer compromise types.  For example, within the privacy 
dimension, one might distinguish knowledge of passwords from knowledge of the secrets 
these passwords protect, and from knowledge of the activity patterns of the authorized 
users of the secrets.  One might distinguish visibility of these secrets to everyone from 
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visibility to a narrower group.  Within the integrity dimension, one can distinguish 
incompleteness from incorrectness.  
 
A second dimension involves operational properties, essentially the different factors that 
make up quality of service.  These properties include rate, timeliness (lack of delay), and 
evenness (freedom from jitter).  
 
A third dimension involves command and control properties, such as the degree of 
confidence, the observability of security and operational properties, and the degree of 
controllability.  This dimension is not covered by the first two sets.  For example, loss of 
the ability to control the operational system might come about through a denial of service 
attack or other compromises of the control system, and loss of observability might come 
about through attacks on the monitoring system.  
 
A fourth dimension distinguishes different subsystems, such as the intra-system 
communications network, the primary operational processes, the security mechanisms, or 
the monitoring subsystem. These distinctions may be made even more finely, to 
distinguish the types of information, operations, information sources or destinations 
affected, and the identity and roles of people participating in or affected by the 
compromises.  (In this last situation, one possible compromise might be that someone 
inside is leaking passwords or other access information).  
 
The highest level of the trust model deals with trustworthiness. The fact that a resource 
has been compromised does not in and of itself imply that it is totally unsafe to utilize it.  
That conclusion depends on the precise way in which the consumer wants to utilize the 
resource as well as on assessments of the intention of the compromiser.   Consider two 
different attack scenarios: in the first, the system is compromised by ``teenaged hackers'' 
looking for free resources, in the second it is compromised by state-sponsored malicious 
agents.  Clearly, we should generally be more wary of using a resource in the second case 
than the first; but if we are not very sensitive to quality of service and perhaps only care 
about the integrity of our data, then the first case is not all that risky.  
 
Knowledge of attack types mainly guides the organization's attempts to defend against 
future attacks.  Knowledge of compromises indicates the threats to operations.  
Knowledge of trust states guides how the organization carries on in the face of partially 
understood compromises. Because intent plays a central role, it too must be modeled 
throughout the three layers, moving from raw reports about behavior at the base level, to 
statements about intent in the middle layer and finally entering into assessments of 
trustworthiness at the highest level.  
 

b) Perpetual Analytic Monitoring keeps the Trust Model current by detecting 
events and Trend Patterns which are indicative of compromise 
 
Building a trust model involves more than just detecting an intrusion.  Indeed, what is 
more important is a template of activity patterns consisting of several temporal regions: 
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In a typical takeover involving the theft of a user password we would expect to see the 
following activities: First there would be a period of attacks (particularly password 
scans).  Then there would be a ``quiescent period''.  Then there would be a period of 
increasing degradation of service.  Finally, there would be a leveling off of the 
degradation but at the existing high level.  We call such a temporal pattern a ``trend 
template''.  In our previous work we have developed a representation language for trend 
templates and tools for online monitoring and analysis of data streams so as to recognize 
instances of trend templates in the stream. 
 
The goal of Perpetual Analytic Monitoring is to assess the trustworthiness of the 
computational resources in the environment.  This in turn requires us to make estimates 
of the likelihood that a resource has been compromised in a particular way.  We believe 
that trend templates represent a necessary tool for doing so. Of course, the overall 
matching of trend templates depends on tools that can detect periods of uniform behavior 
(e.g., uniformly increasing, constant, oscillating at constant frequency).  
 
Trend templates are necessary, but not sufficient in themselves.  We also need to make 
inferences about the factual situation at hand (e.g., are international tensions rising?) and 
about the intentions, and states of mind of significant players (e.g., would it be likely that 
they are trying to attack me?).  All of these inferences involve the combining of evidence 
to provide assessments of the likelihood of certain propositions.  Bayesian networks 
provide a convenient formalism for representing and reasoning with basic probabilistic 
information.  
 
Monitoring mechanisms must be capable of assimilating information from a broad 
variety of information sources including Intrusion Detection systems, self-monitoring by 
the application system, system logs, network traffic analyzers, etc The principal goal of 
Monitoring and Analysis tools is to keep the Trust Model current.  However, when these 
tools have achieved a high degree of confidence that a compromise has occurred, the 
monitoring and analysis system must generate an alarm that may lead currently executing 
application components to rollback and attempt to use alternative strategies and 
resources.  Deciding when to generate such an alarm is not trivial; if it is done too 
liberally then applications will never get useful work done as they service an endless 
stream of alarms.  If it is done too conservatively, then application components will be 
corrupted.  The decision to sound the alarm must be based on a decision theoretic 
analysis of the expected benefit and risks associated with raising an alarm. 
 

c) The Autonomous Adaptive Survivable System infrastructure uses Trust Models 
and models of the purpose of expected behavior to select computational strategy and 
to detect and recover from compromises 
 
Autonomous Adaptive Survivable Systems have the goal of adapting to the variations in 
their environment so as to render useful services under all conditions.  In the context of 
Intrusion Tolerance, this means that useful services must be provided even when there 
have been successful information attacks.   
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AASS's achieve adaptivity in two ways: First, they include many alternative 
implementations of the major computational steps, each of which achieves the same goal 
but in different ways.  Before each step is actually initiated, the system first assesses 
which of these most appropriate in light of what is known about the environment.  In the 
Survivability context, such decisions must be rational decisions rooted in the Trust 
Model. 
 
The second way in which the system achieves adaptivity is by noticing when its 
components fail to achieve the conditions relied on by other modules, initiating 
diagnostic, rollback and recovery services. This depends on effective monitoring of 
system performance and trustworthiness that in turn requires a structured view of the 
system as decomposed into modules, together with teleological annotations that identify 
prerequisites, post-conditions and invariant conditions of the modules.  These teleological 
models also include links describing how the post-conditions of the modules interact to 
achieve the goals of the main system and the prerequisites of modules further 
downstream.  
 
The model-based diagnostic services we described earlier will play a key role in an 
AASS's ability to recover from a failure. The diagnosis helps the application decide how 
to recover from the failure and restore normal functioning.  It also provides evidence to 
the overall monitoring environment about the trustworthiness of the underlying 
computational resources, particularly when the most likely diagnoses indicate that one of 
the resources has been compromised. 
 

d) Rational Decision Making uses decision-theoretic models and the Trust Model to 
control decisions about component selection and resource allocation 
 
We assess system trustworthiness and performance according to the trust and teleological 
models in order to make decisions about how to allocate computational resources.  To 
ensure that these decisions represent a good basis for system operation, we will develop 
detailed decision-theoretic models of trustworthiness, suspicion, and related concepts as 
applied to information systems and their components.  These models will relate notions 
such as attractiveness of a system as a target, likelihood of being attacked, likelihood of 
being compromised by an attack, riskiness of use of the system, importance or criticality 
of the system for different purposes, etc. 
 
The models will also relate estimates of system properties to an adaptive system of 
decision-theoretic preferences that express the values guiding the operation of both 
system modules and the system as a whole.  We will develop mechanisms that use these 
elements to allocate system resources optimally given task demands, trustworthiness 
judgments, and the resources available. 
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VIII.  Project Outreach 
A. Cumulative Chronological List of Written Publications  
 
Shrobe, Howard: “Model-based Troubleshooting for Information Survivability” 
Proceedings of DISCEX I, Hilton Head, 1998. 
 
Shrobe, Howard and Doyle, John, “Active Trust Management for Adaptive Survivable 
Systems” First International Workshop on Self-Adaptive Systems, 1999. 
 
B. Cumulative List of Professional Personnel Associated with the 
Research Effort 
 
Dr. Howard E. Shrobe 
Dr. John Doyle 
Professor Randall Davis 
John Mallery 
Erwin Tam 
 
C. Cumulative List of Papers Presented at Meetings 
 
Howard Shrobe, “Information Survivability” EECS Departmental Colloquium, MIT, 1998. 
 
Howard Shrobe, “Information Survivability” Oakland Security Conference, 1998.  
 
Howard Shrobe, Invited Keynote Address, The Innovative Applications of AI Conference 
(part of the AAAI National Conference), August 1999. 
 
Shrobe, Howard: “Model-based Troubleshooting for Information Survivability” 
Proceedings of DISCEX I, Hilton Head, 1998. 
 
Shrobe, Howard and Doyle, John, “Active Trust Management for Adaptive Survivable 
Systems” First International Workshop on Self-Adaptive Systems, 1999. 
 
D. Consultative and Advisory Functions to Other Laboratories 
 
Dr. Howard Shrobe presented a talk at a PI Meeting of the Global Mobile Computing 
Program (GLOMO) at Lincoln Labs, outlining the ideas of Information Survivability as 
Adaptive Computing and also explaining Active Networking research ideas. 
 
E.  Theses related to the research 
 
Erwin Tam, Integration of a Bayesian Net Solver with the KBCW Comlink System 
and a Network Intrusion Diagnosis System, August 27, 1999.
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